Skip to Content

MD Anderson Events

Radiation Physics - Big Data Lecture Series -

Radiation Physics - Big Data Lecture Series - "Big Data Success Stories at University of Michigan, and Future Plans" Charles Mayo, PhD, University of Michigan

Big Data is one of the “platforms” for the “pillars” of our strategic initiatives.  A lecture series has been developed to help inform and communicate our efforts in Big Data, with particular focus on outside experts speaking on their success stories at their institutions. 

Date: 5/9/18, 12pm to 1pm
Time: 5/9/18, 12pm to 1pm
Location: AT&T Telehealth Classroom, Faculty Center (FC1.2002)
Format: All Employee Meeting
Speaker Bio: research interests are focused improving how we care for our patients by developing analytics tools that automate providing quantitative and statistical measures to augment qualitative and anecdotal evaluation. This requires technical efforts, to create databases and software, and clinical efforts, to integrate data aggregation, analysis and use into routine processes. Construction of knowledge based clinical practice improvement databases and standardizations in nomenclatures and ontologies needed to automate aggregation for all patients in a practice and enable data exchanges within and among institutions are facets of this work. A recent example includes, design implementation and use of an electronic prescription database to improve per patient treatment plan evaluation and enable longitudinal monitoring of results of practice quality improvement efforts. We are also leading a group, sponsored by our professional societies, to define national standards for naming used in data exchanges for clinical trials. Another facet is improvement of patient treatment plan evaluation. Traditionally qualitative, visual inspection of spatial dose relationships to target and normal tissues is used to evaluate plans. Development of algorithms to calculate vectorized dose volume histograms and other vector based spatial-dose objects provide a means to quantify those evaluations. Recently use of databases of dose information have enabled construction of statistical metrics to improve treatment plan evaluation and development of models for quantifying relationships to outcomes. Data science applications: data driven clinical practice improvement, multi-institutional analysis of factors affecting patient outcomes and practice characterization, nomenclature and ontology.
Sponsor: Mary Martel
Contact: Dana Garrison - (713) 563-2655 -