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SUMMARY. Nearly all statistical methods for dose-�nding in phase I clinical trials require

that toxicity be summarized as a single binary variable. In most phase I oncology settings,

however, the patient is at risk of several qualitatively di�erent toxicities, each occurring at

several possible levels of severity. Moreover, the di�erent toxicities often are not of equal clin-

ical importance, even if they occur at the same nominal level of severity. To apply established

dose-�nding methods, it is common practice to �rst dichotomize each type of toxicity at a

particular severity level and then de�ne \toxicity" as the maximum of these indicators. We

propose a new statistical framework for dose-�nding based on a vector of qualitatively di�er-

ent, ordinal-valued toxicities. The underlying probability model speci�es how the severity of

each type of toxicity varies with dose, and a vector of correlated Gaussian latent variables is

used to induce association among the di�erent toxicities. Numerical weights characterizing

the importance of each level of each type of toxicity are elicited from the physicians planning

the trial, and they are used to de�ne a one-dimensional total toxicity burden that is the basis

for the dose-�nding algorithm. The method is illustrated by application to a phase I trial of

gemcitabine in soft tissue sarcoma.

KEY WORDS: Adaptive design; Bayesian inference; Latent variables; Markov Chain Monte

Carlo



1. Introduction

The primary goal of a phase I clinical trial of a new chemotherapeutic agent in oncology is

to determine a dose having acceptable toxicity. Because patient safety is a central concern in

such trials, typically patients are treated in successive cohorts, with the dose for each cohort

chosen adaptively utilizing the data from previous patients in the trial. Thus, a phase I design

must provide both an algorithm for sequentially assigning doses to patient cohorts and a rule

for selecting a dose, usually called the "maximum tolerated dose" (MTD), at the end of the

trial. For convenience, we will refer to these two related statistical problems together as

\dose-�nding." Ethically, the phase I dose-�nding problem is diÆcult because doses must be

assigned to patients based on very little data, and this problem is especially acute early in the

trial. The problem is scienti�cally diÆcult because any ethically reasonable algorithm must

de-escalate when a dose is found to be unacceptably toxic. Consequently, because a limited

number of toxicities are permitted to occur, little or no data are available on doses having

high toxicity probabilities. Numerous statistical designs for phase I trials have been proposed

(Storer, 1989; O'Quigley, Pepe and Fisher, 1990; Durham and Fluornoy, 1994; Whitehead,

1997; Babb, Rogatko and Zacks, 1998; Piantadosi, Fisher and Grossman, 1998; Gasparini

and Eisele, 2000). Each of these approaches characterizes toxicity as a binary variable, with

the underlying statistical model and the algorithm for trial conduct based on the probability

of toxicity as a function of dose.

Given the paucity of data in phase I, it is especially important that statistical dose-

�nding methods use as much of the available information as possible. We are motivated by

three closely related problems, all pertaining to the manner in which \toxicity" is de�ned

before speci�cation of a model and method for dose-�nding in phase I. The �rst problem is

that, in virtually all phase I oncology settings, the patient is at risk of several qualitatively

di�erent toxicities, rather than only one. A typical protocol for a phase I oncology trial

includes a list of possible toxicities that must be monitored. This list often includes transient

conditions such as fatigue, nausea and vomiting, myelosuppression (low blood cell count,

associated with suppression of normal bone marrow function), thrombocytopenia (low platelet
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count), fever, infection, dysfunction of speci�c organs, and irreversible toxicities such as

permanent organ damage or death. For a variety of reasons related to the biochemistry of

the particular chemotherapy or the biology of the disease, in general the toxicities do not

occur independently. For example, myelosuppression often leads to infection or fever.

The second problem is that a given toxicity generally has several levels of severity. Phase

I trial protocols routinely include detailed de�nitions of the grades of each type of toxicity,

typically coded in terms of integer values varying from 0 (no toxicity of that type) to 4 (the

most severe level, such as permanent damage to a particular organ). In order to accommodate

statistical paradigms that require toxicity to be de�ned as a single binary variable, most phase

I protocols de�ne \toxicity" as the occurrence of any of several listed toxicities at grade 3 or

4. While it is reasonable in many phase I settings to reduce the ordinal scale of given type

of toxicity to the binary variable for which grades 0, 1 or 2 are \no toxicity" while grades

3 or 4 are \toxicity," this common practice may discard potentially useful information. For

example, if several patients experience a grade 2 toxicity of a given type at a dose level d, then

a typical method based on the above binary variable would escalate to d+1 as if no toxicities

had occurred at d. Clearly, a probability model that distinguishes between grades 0, 1 and 2,

rather than combining them as the event \no toxicity," should provide a more reliable basis

for predicting the jump from grade 2 to grade 3 or higher as the dose is increased from d to

d+1.

The third problem is that qualitatively di�erent toxicities often are not equally important

clinically, even if they occur at the same nominal level of severity. Assuming for simplicity

that each of several di�erent types of toxicity has been de�ned as a binary variable, the

further data reduction of de�ning \toxicity" as the maximum of these indicators implicitly

assumes that the di�erent toxicities are exchangeable, hence equally important. For example,

this de�nition does not distinguish between a patient with grade 3 fatigue and a patient who

has su�ered complete kidney failure.

In this paper, we propose a statistical framework for dose-�nding that addresses all of

the problems described above. We characterize patient outcome as a vector of qualitatively
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di�erent, ordinal-valued toxicities. The underlying probability model speci�es the manner

in which the severity of each type of toxicity varies with dose, and a vector of correlated

latent variables is used to induce association among the di�erent toxicities. Our dose-�nding

method relies on numerical weights characterizing the importance of each level of each type of

toxicity. These weights must be elicited from the physicians planning the trial. The weights

provide a basis for de�ning a one-dimensional total toxicity burden for each patient that

is the basis for the dose-�nding algorithm. This method of dimension reduction quanti�es

the physicians' experiences in dealing with multiple toxicities in the clinic. Our application

illustrates how the dose-�nding algorithm reects the physicians' clinical goals and standards

more closely than do conventional methods that begin by de�ning a single binary toxicity as

the maximum of several di�erent toxicity severity indicators.

The remainder of the paper is organized as follows. We present the probability model in

Section 2. Trial conduct is described in Section 3, including algorithms for eliciting toxicity

severity scores and a target toxicity burden, and for assigning doses to successive patient

cohorts. In Section 4, we describe numerical methods for computing posteriors and decision

criteria. We illustrate the methodology with an application to a clinical trial in soft tissue

sarcoma in Section 5. Section 6 illustrates how the method may be applied in the special

case of one ordinal toxicity, and we conclude with a discussion in Section 7.

2. Multiple Toxicity Model

Let Y = (Y1; � � � ; YJ) denote the vector of ordinal toxicity variables. The j
th type of toxicity,

Yj; takes on one of the Cj +1 values yj;0; yj;1; : : : ; yj;Cj
; where yj;k is the k

th most severe level

for k = 0; : : : ; Cj; and yj;0 = \no toxicity of type j:" For example, if Yj has the �ve possible

values yj;0 and yj;k = \grade k toxicity of type j" for k=1, 2, 3 or 4, then Cj = 4. Binary Yj

corresponds to Cj = 1.

We will apply the multivariate ordinal probit model of Chen and Dey (2000), extended to

allow the entries of Y to have di�erent numbers of ordinal categories. This class of models,

which relies on a vector of correlated latent Gaussian variables to induce association among

binary, categorical, or ordinal Yj 's, was developed by Albert and Chib (1993), and Chib and
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Greenberg (1998). To improve numerical stability, we �rst replace each raw dose d by x =

log(d=d�), where d* is at least as large as the maximum raw dose value, and we will refer

to x as the \dose." We model association among the Yj 's by introducing the vector ZJ�1 =

(Z1; � � � ; ZJ) of correlated latent variables, which is assumed to be multivariate normal with

mean X���; all variances equal to 1 and correlation matrix 


. Here XJ�2J is the dose matrix

X =

2
6666666664

1 x 0 0 : : : 0 0

0 0 1 x : : : 0 0

...
...

...

0 0 0 0 � � � 1 x

3
7777777775

and ���2J�1 = (���1; � � � ; ���J) with each ���
2�1
j = (�j;0; �j;1): The latent variable vector Z determines

the observed outcome vector Y via the conditions

Yj = yj;k if j;k � Zj < j;k+1 for k = 0; 1; : : : ; Cj and j = 1; : : : ; J;

where 
Cj�1

j = (j;1; � � � ; j;Cj
) is a vector of model parameters satisfying the ordering con-

straint �1 = j;0 < j;1 < � � � < j;Cj
< j;Cj+1

= max where max is some �xed positive

quantity (we use 10). We denote Aj;k = (j;k; j;k+1] and let 
C+�1 = (1; � � � ; J) be the vector

of all cut-o� parameters, where C+ = C1 + � � � + CJ . The requirement that the variance-

covariance matrix 


 of Z be its correlation matrix is necessary to ensure identi�ability of the

posterior distributions, which also requires that j;1 � 0: Since j;0 = �1, j;Cj+1 = max,

and j;1 � 0; if Cj > 1 there are only Cj � 1 random cut-point parameters. Thus, although 

has C+ entries, it actually contains only �J
j=1 1(Cj > 1)(Cj � 1) random parameters, where

1(A) is the indicator of the event A. The marginal probability distribution of Yj for a patient

treated with dose x thus takes the form

�j;k(x) = Pr(Yj = yj;k j x) = �fj;k+1 � (�j;0 + �j;1x)g; (1)

where � is the standard normal cdf. Denote ���j(x; ���) = (�j;1(x; ���); : : : ; �j;Cj
(x; ���)) for each

j = 1; : : : ; J and ���(x; ���) = (���1(x; ���); : : : ; ���J(x; ���)): Let �W(� j ���;���) denote the pdf of a

multivariate normal random vector W with mean vector ��� and variance-covariance matrix
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���: For a given vector k = (k1; : : : ; kJ) of toxicity severity levels, denote the corresponding

outcome of Y by y(k) = (y1;k1; : : : ; yJ;kJ ); and the corresponding J-dimensional set of Z

values by A(k; ) = A1;k1 � � � � � AJ;kJ : The likelihood of a single patient is given by

L(Y j ;���;


; x) =
C1Y

k1=0

� � �

CJY
kJ=0

�Z
A(k;)

�Z(z j X���;


)dz

�1[Y=y(k)]

; (2)

which shows how Z induces association among the elements of Y through the correlation

matrix 


: Denoting the dose assigned to the ith patient by x(i) and the corresponding matrix

by Xi, the likelihood for n patients is obtained by substituting Y = Yi, x = x(i) and X = Xi

in expression (2) and taking the product over i = 1; � � � ; n: We will denote the J(J � 1)=2

unique o�-diagonal elements of 


 by ��� = (�1;2; �1;3; � � � ; �J�1;J) and let ��� = (���; ; ���); where 

contains only the random cut-point parameters, as described above.

We assume that ��� � N2J(���;���); a priori, subject to the constraint that Pr(�j;1 > 0) = 1 for

all j = 1; : : : ; J: That is, we abuse notation in that the prior of ��� is a 2J-variate normal with

J of its values truncated at 0, but ��� and ��� correspond to the untruncated 2J-variate normal.

This constraint ensures that Pr(Yj > yj;k j x) = 1��fj;k�(�j;0+�j;1x)g increases with x for

each j and k > 1; which is necessary for the model to make sense. For each j with Cj > 1, we

will assume that the random parameters fj;2; : : : ; j;Cj
g follow independent uninformative

priors, with each g(j) / 1; subject to the constraint 0 < j;2 < j;3 < � � � < j;Cj
< max: For

the correlation parameters, we assume that the elements of ��� are iid N(0; 1000) truncated to

the support [�1; +1]: We denote the prior of ��� by f(���).

3. Toxicity Weight Elicitation and Dose-Finding

If doses are to be chosen based on multivariate toxicity data, inevitably some form of di-

mension reduction must be carried out. The conventional approach is to �rst reduce each

Yj to 1(Yj > yj;k) for a toxicity level yj;k of type j considered by the physicians to be dose

limiting, and then de�ne \toxicity" to be the maximum of the J indicators. As described

in Section 1, this conventional approach su�ers from several pathological properties. The

following proposed alternative approach does away with these pathologies by incorporat-

ing medical knowledge into the dimension reduction. We begin by eliciting positive-valued
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numerical weights characterizing the importance of each severity level of each type of tox-

icity from the physicians planning the trial. For each j = 1; : : : ; J; let wj;k be the elicited

weight of toxicity type j occurring at severity level yj;k, and denote wj= (wj;1; � � � ; wj;Cj
) and

wC+�J�1 = (w1; : : : ;wJ): The j
th weight vector must satisfy the obvious requirement that

0 = wj;0 < wj;1 < wj;2 < � � � < wj;Cj
: If the physicians consider two consecutive levels of Yj

to have the same weight, then these two levels should be combined. For example, if they

give grades 3 and 4 of a given toxicity the same weight then these should not be considered

separate levels. The numerical values of the wj;k's may be on any positive domain, since

the method is invariant to the weights' multiplicative scale. In our application, we found it

convenient to elicit the weights on the interval (0, 10).

We de�ne the severity weight of Yj for a patient treated at dose x to be the random

variable Wj taking on the value wj;k with probability �j;k(x; ���): This replaces the observed

ordinal variable Yj with the weight-valued random variableWj that puts the severity category

probabilities of Yj on the corresponding elicited weights. We de�ne the total toxicity burden

to be the sum TTB =
PJ

j=1Wj; and base the dose-�nding algorithm on the posterior expected

TTB at each dose:

 (w; x; data) = EfE (TTB j x; ���) j datag =
JX

j=1

CjX
k=1

wj;k Ef�j;k(x; ���) j datag: (3)

The dose-�nding algorithm requires a �xed target TTB value,  �; which must be elicited

from the physicians to reect their clinical decision-making. Each successive cohort's dose is

that having posterior mean  (w; x; data) closest to  �: Using the posterior median or mode

of
PJ

j=1 Wj rather than the mean are also reasonable alternatives.

The severity weights and the target TTB may be obtained as follows. This must be done in

close collaboration with the physicians, and we strongly advise against a statistician specifying

either the weights or the target TTB independently. After asking the physicians to specify the

particular toxicities to be monitored and their severity levels, ask them to specify a numerical

severity weight for each level of each toxicity. This establishes w1; : : : ;wJ : Next, identify a set

of hypothetical J-variate toxicity outcomes for each of the patients in m hypothetical cohorts.

If the planned cohort size is c, these may be denoted (y�1;1; : : : ;y
�

1;c); : : : ; (y
�

m;1; : : : ;y
�

m;c):
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These outcomes should be chosen so that they cover a reasonably wide range of realistic

possibilities. Let w�

r;l be the severity weight vector corresponding to y�r;l; for r = 1; : : : ;m

and l = 1; : : : ; c: The mean total toxicity burden of the rth hypothetical cohort is

TTB
�

r =
1

c

cX
l=1

JX
j=1

w�

r;l;j :

Denote the ordered mean hypothetical TTB values by TTB
�

(1) � � � � � TTB
�

(m): Next, for

each hypothetical cohort, r = 1; : : : ;m; ask the physicians to determine whether observation

of y�r;1; : : : ;y
�

r;c would cause them to repeat the same dose (Dr = Repeat), escalate the dose

(Dr = Escalate), or de-escalate the dose (Dr = De-escalate) for the next cohort. Denote

the vector of decisions in the above order of increasing TTB by D(1) � D(2); : : : � D(m):

An admissible sequence of decisions ordered in this way is de�ned as one consisting of a

string of escalations, followed by a string of repeats, followed by a string of de-escalations.

If the m decisions are not admissible then, in collaboration with the physicians, modify the

hypothetical outcomes, elicited decisions, weights, or possibly other portions of the underlying

structure as appropriate. Once an admissible set of decisions is obtained, de�ne the target

TTB to be the mean of the elicited TTB
�

r values for which the physicians' decision was to

repeat the same dose. Formally,

 � =

Pm
r=1 TTB

�

r 1(Dr = Repeat)Pm
r=1 1(Dr = Repeat)

:

4. Computing

We will follow the computational framework developed by Albert and Chib (1993) for one

polytomous outcome, extended by Chib and Greenberg (1998) to accommodate correlated

binary outcomes and by Chen and Dey (2000) to the correlated ordinal case. Denote the

outcome indices of the ith patient by ki = (ki;1; : : : ; ki;J); for i = 1; : : : ; n; and write Z(n) =

(Z1; : : : ;Zn) and Y
(n) = (Y1; : : : ;Yn): Since PrfYi = y(ki) j Zi; ���g = 1fZi 2 A(ki; )g; by

Bayes' theorem the joint posterior of the latent variables and parameters is given by

f(Z(n); ��� j Y(n)) =
nY
i=1

f(Zi; ��� j Yi = y(ki); xi) / f(���)
nY
i=1

1fZi 2 A(ki; )g f(Zi j ���; xi):

(4)
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Under this representation, the latent variables will be used to ease the computational burden

of computing the posterior f(��� j Y): By using MCMC methods, values of (Z(n); ���) generated

from (4) will yield the desired posterior.

The following algorithm is similar to those given by Chen and Dey (2000) and Cowles

(1996). Let Z
(n)
j = (Zj;1; : : : ; Zj;n) be the vector of n independent latent variables associated

with the jth toxicity, and let Z
(n)
�j denote the subvector of Z

(n) obtained by deleting Z
(n)
j ; that

is, by deleting Zi;j from Zi for each i = 1; : : : ; n: The MCMC proceeds as follows:

Step 1. For each j = 1; : : : ; J; beginning with f(j; Z
(n)
j j Z

(n)
�j ;Y

(n); ���; ���); integrate out Z
(n)
j

to obtain f(j j Z
(n)
�j ;Y

(n); ���; ���); generate j from this distribution, and generate Z
(n)
j from

f(Z
(n)
j j Z

(n)
�j ; j;Y

(n); ���; ���):

Step 2. Generate ��� from f(��� j Z(n);Y(n); ; ���):

Step 3. Generate ��� from f(��� j Z(n);Y(n); ; ���):

Step 1 utilizes the fact that f(j j Z
(n)
�j ;Y

(n); ���; ���) = f(j j Z
(n)
�j ; �j;Y

(n); ���; ���) due to the

conditional independence of 1; : : : ; J : It alternates between this distribution and f(Z
(n)
j j

Z
(n)
�j ; j;Y

(n); ���; ���) because these are much more tractable than f(j j Z
(n);Y(n); ���; ���): Be-

cause this MCMC approach generates observations from the full conditional f(���; Z(n)
j Y(n));

the posterior f(��� j Y(n)) is obtained as a natural consequence. Details of the above steps are

given in an Appendix.

5. Application

We illustrate the methodology by describing application to a phase I trial of pre-surgical

gemcitabine (G) with external beam radiation (EBR) for patients with soft tissue sarcoma.

The trial was activated in January, 2002, and is ongoing at this writing. The three physicians

conducting the trial, P. Pisters, M. Ballo, and S. Patel, together speci�ed the toxicities and

severity weights summarized in Table 3. The process of eliciting this information took a

total of four sessions, during which the physicians successively modi�ed the toxicities, their

categories, and the category severity weights. These modi�cations were based on the observed
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behavior of the algorithm and the fact that this process requires careful consideration of the

clinical importance of each severity level of each type of toxicity. The elicitation process also

was attenuated, in part, because the model, methodology, and computer code still were being

developed. This experience motivated the algorithm for eliciting the toxicity severity weights

and the total toxicity burden that we have described above, in Section 3. We expect the

elicitation process to take considerably less time in future applications of the method.

Each patient in the trial receives a �xed dose of EBR (50 cGy) and one of ten doses of

gemcitabine, 100, 200, ..., or 1000 mg/m2: Patients will be treated in cohorts at successively

chosen dose levels, with the �rst cohort treated at 400 mg/m2: As in many phase I trials,

the physicians imposed the extra safety measure that no untried dose may be skipped when

escalating. Because it may take up to 6 weeks to evaluate each of the �ve types of toxicity in

a given patient, the cohort size is allowed to vary between 3 and 4, as follows. If the �rst 3

patients in a cohort have had all of their toxicities evaluated before a 4th patient is accrued,

then that cohort is considered complete and a new cohort is treated at the next chosen dose.

When at least 36 patients have been accrued, the trial will stop. Using the elicitation method

described earlier, the target per patient TTB was determined to be  � = 3.04.

As a basis for comparison, for this trial conventional methods typically would de�ne

one binary \toxicity" as the maximum of the indicators 1(Myelosuppression grade � 3),

1(Dermatitis grade = 4), 1(Liver toxicity grade� 3), 1(Nausea/vomiting grade� 3), 1(Fatigue

grade = 4). For example, a conventional method would consider a patient with grade 3 der-

matitis and grade 2 liver toxicity (TTB=4.5) to have \no toxicity" and a patient with grade 4

fatigue (TTB=1) to have \toxicity," and furthermore would not distinguish the latter patient

from a patient with grade 4 myelosuppression with fever, grade 4 dermatitis, and grade 4 liver

toxicity (TTB=18). Consequently, the proposed algorithm based on the TTB with target

3.04 for  (w; x; data) makes more sensible decisions. For example, if 3 of 4 patients treated

at 400 mg/m2 have either grade 4 fatigue or grade 3 myelosuppression without fever and one

also has grade 3 nausea, for TTB values f0, 1, 1, 2.5g and empirical mean TTB = 1.125, then

the algorithm would escalate to 500 mg/m2; whereas a conventional method would score 3
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toxicities in the 4 patients and de-escalate to a lower dose.

An illustration of how the algorithm behaves in practice is given in Table 2, with the

corresponding TTB values  (w; x; datan) after n patients' data have been observed given in

Table 3 for n = 4, 8,..., 36, that is, after each cohort. The �rst two cohorts' outcomes are

actual data from the trial, whereas the data for all subsequent cohorts are hypothetical. After

the �rst cohort, although  (w; 700; data4) = 3.24 is closest to the target 3.04, since no untried

dose may be skipped when escalating the second cohort is treated at 500. Incorporating the

second cohort's data, since  (w; 600; data8) = 2.85 is closest to 3.04 the third cohort is treated

at 600. The next value  (w; 700; data12) = 3.22 determines that the fourth cohort receives

dose 700, and the trial subsequently de-escalates to 600 for two cohorts and then returns to

700 as the dose for the �nal three cohorts, with  (w; 700; data36) = 2.97 determining 700 to

be the MTD. Note that any conventional method based on a typical binary toxicity would

have scored 3 toxicities in the �rst cohort of 4 patients and thus de-escalated to 300.

To assess average behavior of the method, we performed a simulation study of the sarcoma

trial. Due to the inherent complexity of patient outcome, specifying a reasonably represen-

tative set of possible dose-toxicity probabilities to study is not straightforward. In order to

obtain a manageable set of dose-toxicity scenarios for the simulation study, we considered

only cases where the target TTB occurred at 200, 500, or 800 mg/m2; and we categorized the

main source of toxicity as being either those having high severity (HS) weights, of 5 or greater,

or low severity (LS) weights, of 2 or smaller. The remaining toxicities, speci�cally grade 3

dermatitis (w=2.5) and grade 3 liver toxicity (w=3), were considered intermediate and were

included in either group. Thus, we studied a total of six di�erent scenarios. Each scenario

was characterized by 10C+ = 130 �xed probabilities pj;0;d; pj;1;d; :::; pj;Cj ;d; for j = 1; :::; 5 and

d = 100, ..., 1000, where pj;k;d is the �xed probability of the jth toxicity occurring at its

kth severity level with dose d. These probabilities were chosen nonparametrically, and not

determined by the parametric model underlying the method. Figure 1 summarizes the six

simulation scenarios graphically in terms of the TTB as a function of dose.

Association among the elements of each simulated toxicity vector (Y1; : : : ; Y5) was induced
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by �rst generating observations from a vector Z5�1 of standard normal random variables

having a speci�ed correlation matrix, then de�ning the vector U5�1 = (�(Z1); : : : ;�(Z5))

of correlated uniform(0,1) random variates, and then, denoting Pj;k;d =
Pk

r=0 pj;r;d for k =

0; : : : ; Cj and Pj;�1;d = 0, de�ning Yj = yj;k if Pj;k�1;d � Uj < Pj;k;d: The correlations were

elicited from the physicians in terms of the latent variables, Z; underlying the toxicities, as

follows. The only toxicities that the physicians considered correlated a priori were fatigue and

nausea/vomiting. We asked the physicians the following question: \For two randomly chosen

patients, if you observe that the �rst patient is more fatigued than the second, what is the

probability of observing more severe nausea/vomiting in the �rst patient than the second?"

The physicians' response was that they would assign a probability between 0.55 and 0.60 to

this event. Denoting the latent variables corresponding to fatigue and nausea/vomiting for

the two patients by Zi;F and Zi;N for i = 1,2 and q = Pr(Z1;F > Z2;F j Z1;N > Z2;N); if we

assume q is symmetric in that q = Pr(Z1;F < Z2;F j Z1;N < Z2;N); then this probability is

related to Kendall's � via � = 2q�1. Furthermore, � and the Pearson's correlation � between

ZF and ZN satisfy the relationship � = sin(� �=2) (Kruskal, 1958). Thus, 0.55 < q < 0.60

implies that .15 < � < .31. For the simulations, we used the average � = 0.23.

For the simulation study, we evaluated the MCMC algorithm's performance using stan-

dard convergence diagnostics. It was determined that a burn-in of 1,000 and a chain of length

30,000, retaining every 15th sample, provided adequate convergence. Although the posterior

sample size is constrained by computing resources due to the need for many replications in

the simulation study, in the actual trial conduct we base all inferences on a much larger

MCMC posterior sample size.

The trial was simulated 1000 times under each scenario. Table 3 summarizes the results.

Under scenarios 1 and 2, because the target TTB of 3.04 is achieved at 200 mg/m2; the

starting dose of 400 mg/m2 is unacceptably toxic. Under scenario 1, most of the toxicity is

due to LS events such as grade 2 liver failure, grade 3 or 4 fatigue, or nausea. In contrast,

most of the toxicity burden under scenario 2 is due to HS toxicities such as myelosuppression

with fever or grade 4 liver toxicity. Under either of these two scenarios, the method chooses
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the correct dose 200 mg/m2 over 90% of the time, and on average treats 22 of 36 patients

at this dose. The algorithm thus appears to perform well regardless of whether most of the

toxicity burden arises from low or high severity toxicities. For scenarios 3 and 4, the target

TTB is achieved at 500 mg/m2; with most of the TTB due to LS toxicities under under

scenario 3 and HS toxicities under scenario 4. Again, the method is insensitive to the source

of the toxicities, with an 85% to 87% correct selection rate and most of the 36 patients treated

at or near the selected MTD. For each of scenarios 5 and 6, where the target TTB occurs

at 800 mg/m2; the correct selection probability is about 80%, slightly lower than the other

cases. This is due primarily to the "do-not-skip" rule, which requires that at least one cohort

be treated at each dose level when escalating. Consequently, at least 16 of the 36 patients

must be treated at doses below 800 mg/m2; which reduces the number of patients available

for evaluation at the higher dose levels.

We also examined the sensitivity of the method to varying cohort size, sample size, starting

dose, and correlation among the toxicities. The additional simulations examining the e�ects of

cohort size and sample size were conducted under scenario 4, which has target TTB achieved

at 500 mg/m2 from mostly HS toxicities. For cohort sizes 1, 2, 3, 4, and 5, with starting

dose 400 and sample size 36 as previously, the respective correct selection percentages were

89.0, 85.5, 88.8, 86.9 and 86.4. Since the range of these values is well within what would be

expected from simulation variation, the method thus appears to be insensitive to cohort size.

For sample sizes 28, 32, 36, 40, 44, with the cohort size �xed at 4 and the starting dose 400

mg/m2; the correct selection percentages were 82.5, 84.2, 86.9, 88.4, and 89.2. Thus, as might

be expected, the reliability of the method improves with larger sample size. We examined

the e�ect of changing the starting dose from 400 mg/m2 to 100 mg/m2 under scenarios 2,

4, and 6, where the target TTB is achieved at 200 mg/ m2, 500 mg/m2; and 800 mg/m2;

respectively. In these cases the correct selection percentages were 91.7% when the target is

200 mg/m2, 83.5% when the target is 500 mg/m2 and 42.5% when the target is 800 mg/m2.

The comparatively low value in the last case is as expected, since the \do not skip rule" with

starting dose 100 mg/m2 requires that 28 of the 36 patients be treated at doses below 800
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mg/m2; which leaves at most two cohorts to treat at the correct dose. If this rule is dropped,

the correct selection percentage in this case is 79.7%. However, the trade-o� between larger

correct selection probabilities and the extra measure of safety a�orded by the "do-not-skip"

rule is an important ethical consideration and most clinical oncologists would prefer including

this rule.

Finally, we examined the e�ect of higher correlation among the toxicities on the correct

selection rate. For this purpose, the correlations were changed such that there was high

correlation between fatigue and nausea/vomiting (0.60), low correlation between fatigue and

dermatitis (0.20) and moderate correlation between fatigue and myelosuppression (0.40).

Under scenarios 2, 4, and 6, with this correlation structure the correct selection percentages

were 91.9% when the target TTB was achieved at 200 mg/ m2, 86.1% at 500 mg/ m2, and

79.1% at 800 mg/ m2. Since these are nearly identical to the values in Table 4 obtained

with the original correlation structure, it appears that this degree of association among the

toxicities does not alter the method's behavior, on average.

6. One Ordinal-Valued Toxicity

Because most dose-�nding methods discussed in the literature and used to conduct phase I

trials are based on one binary toxicity, it is worthwhile to explain how our method works in

the case of one ordinal-valued toxicity, Y . Here, Y takes on one of C + 1 ordinal severity

values y0; y1; : : : ; yC ; there is one latent variable Z � N(�0 + �1x; 1) with (Y = yk) =

(k � Z < k+1); and �k(x; ���) = Pr(Y = yk j x; ���) = �fk+1 � (�0 + �1x)g for k = 0; : : : ; C;

where 0 = 1 < 2 < � � � < C : Only one vector of increasing toxicity severity weights,

(w1; : : : ; wk), is elicited, TTB = W where W is the single random variable with Pr(W = wk)

= �k(x; ���); and  � is the elicited target for E(W j data) =
PC

k=1 wk Ef�k(x; ���) j datag:

For example, suppose that a single ordinal toxicity is de�ned in terms of grades 0, 1, 2,

3, 4 with elicited severity weights 0, 1, 2, 3, 6. Suppose further that, for a given dose x;

���(a)(x) = (:50; :10; :10; :20; :10) and ���(b)(x) = (:10; :10; :50; :10; :20): Both of these probability

vectors yield the same conventionally used probability Pr(Y � 3) = .30 of \severe" (grade

3 or 4) toxicity, whereas ���(a)(x) has E(a)(TTB) = 1.5 while ���(b)(x) has E(b)(TTB) = 2.6.
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This illustrates the fact, even if only one toxicity is considered, accounting for multiple

toxicity levels by using their probabilities and elicited toxicity severity weights provides a

more informative way to evaluate toxicity.

7. Discussion

We have described a statistical framework for dose-�nding that accommodates multiple types

of ordinal toxicities for which the severity levels have varying clinical importance. The pro-

posed method requires considerably more e�ort to implement than conventional dose-�nding

methods based on a single binary toxicity. This includes close interaction between the physi-

cians and statisticians to establish the toxicities, their severity weights, and the target TTB,

as well as a subsequent simulation study of the design to establish its operating character-

istics and, if appropriate, calibrate the design parameters. We feel that this e�ort is well

warranted by the advantages that the method provides over more conventional dose-�nding

procedures. By providing a more complete and realistic accounting of adverse treatment

e�ects, the method is able to make much more informed decisions than methods that reduce

the multivariate ordinal toxicity outcome to a single binary variable. Our application to the

soft-tissue sarcoma trial illustrates the method's exibility, and the simulation study shows

that on average the algorithm performs quite well under a wide variety of circumstances.

Still, such a thorough accounting of the complexities of patient outcome may not appeal

to some clinical collaborators, since their participation in the design process requires con-

siderably more work than is the case with conventional methods. We have noted that the

method is much easier to implement in the case of one ordinal toxicity, and this may serve

as a bridge to more complex settings as the process of physician-statistician collaboration

evolves in a given clinic.

Because the statistical framework is, at its heart, a regression model, it can easily in-

corporate covariates. Accounting for heterogeneity in this way would provide a basis for

patient-speci�c dosing, as discussed by Wijesinha and Piantadosi (1995), Babb and Rogatko

(2001), and Legedza and Ibrahim (2001) in the single binary toxicity case. A rather di�er-

ent but equally important extension would be to incorporate eÆcacy outcomes, such as the
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degree of tumor shrinkage. This would be similar in spirit to the methods proposed by Thall

and Russell (1998), O'Quigley, Hughes and Fenton (2001), or Braun (2002). These currently

are topics for future study.
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Appendix

To generate the cut-point parameters j from f(j j Z
(n)
�j ;Y

(n); ���; ���) in Step 1, �rst note that,

due to independence among patients,

f(Z
(n)
j ; j j Y

(n);Z
(n)
�j ; ���; ���) =

nY
i=1

�
f(Zi;j; j j Yi; Zi;�j; ���; ���)

�

/

nY
i=1

1(Zi;j 2 Aj;ki;j )�(Zi;j j mi;j; �i;j);

where mi;j and �i;j are the location and scale parameters for the truncated normal,

mi;j = �j;0 + xi�j;1 + ���(j;�j) ���
�1
(�j;�j) (Zi;�j � (X���)�j)

and

�i;j = 1� ���(j;�j) ���
�1
(�j;�j) [���(j;�j)]

t;

denoting corr(Zi;j;Zi;�j) = ���
(1�J�1)

(j;�j) ; and corr(Zi;�j;Zi;�j) = ���
(J�1�J�1)

(�j;�j) ; where (X���)
(J�1�1)
�j

is X��� with the jth element deleted. Denoting Sr = fi : Zi;j 2 Aj;rg for r = 0; : : : ; Cj, we can

write

nY
i=1

1(Zi;j 2 Aj;ki;j )�(Zi;j j mi;j; �i;j) =

CjY
r=0

Y
i2Sr

1(Zi;j 2 Ai;j)�(Zi;j j mi;j; �i;j)

and, integrating out Zi;j;

f(j j Y
(n);Z

(n)
�j ; ���; ���) =

CjY
r=0

Y
i2Sr

(
�

 
j;r+1 �mi;j

�
1=2
i;j

!
� �

 
j;r �mi;j

�
1=2
i;j

!)
:

For Step 2, by independence

f(Zj j Z�j;Y
(n); ���; ���; ) =

nY
i=1

f(Zi;j j Zi;�j;Y
(n); ���; ���; ):

Values may be obtained from this full conditional distribution by noting that it is the trun-

cated normal with mean mi;j and variance �i;j as given above.

Step 3 is complicated by the requirement that �j;1 > 0: The full conditional distribution

of ��� is 2J-dimensional normal with mean ~��� and covariance matrix ~��� given by

~��� = ~���
�
����1���+

nX
i=1

X0

i

�1Zi

�
and ~��� = ����1 +

nX
i=1

X0

i

�1Xi:
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Partition ��� into the intercepts ���(0) = (�1;0; : : : ; �J;0) and truncated slopes ���
(1) = (�1;1; : : : ; �J;1):

Let ���
�(j;1) be the 2J � 1 dimensional subvector of ��� obtained by deleting �j;1; and de�ne

~��(j;1) similarly. To generate the elements of ���(1)
; we will sample from the univariate full

conditional of each truncated �j;1: Denote the (2J � 1)� (2J � 1) submatrix of ~� that is the

variance-covariance matrix of ���
�(j;1) by

~��[(j;1);(j;1)]; let �j;1 = var(�j;1), and let �[�(j;1);(j;1)]

the vector of 2J � 1 covariances of �j;1 with ����(j;1): Re-arrange the rows and columns of ~�

so that

~� =

2
64 ~��[(j;1);(j;1)] �[�(j;1);(j;1)]

�[�(j;1);(j;1)] �j;1

3
75

Sample [�j;1 j ��(j;1);Z
(n);Y(n); ; ���]; the jth truncated slope parameter, from its univari-

ate truncated normal, which has location parameter ~�(j;1)+�[�(j;1);(j;1)]
0 ~� �1

�[(j;1);(j;1)] (����(j;1) �

~��(j;1)) and scale parameter �(j;1)-�[�(j;1);(j;1)]
0 ~� �1

�[(j;1);(j;1)] �[�(j;1);(j;1)]:

Next, we sample from the full conditional distribution of the intercepts ���(0). Re-arrange

the rows and columns of ~� so that

~� =

2
64 ~�1;1

~�1;0

~�0;1
~�0;0

3
75

where ~�1;1 is the variance-covariance matrix of ���(1)
; ~�0;0 is the covariance matrix of ���(0)

;

and ~�1;0 is the cross-covariance matrix of ���(1) with ���(0)
: Sample ���(0) from the conditional

J-variate normal distribution of [���(0)
j ���

(1)
;Z(n);Y(n); ; ���]; which has mean vector ~���(0) +

~�0;1
~��1
1;1(���

(1)
� ~���(1)) and variance-covariance matrix ~�(0;0) - ~�0;1

~��1
1;1
~�1;0:

Finally, using the fact that f(��� j Z(n);Y(n); ; ���) / f(���)
Qn

i=1 �(Zi j Xi���; ���); we use an

independence chain Metropolis-Hastings step to sample ���; following the suggestion of Chib

and Greenberg (1998) by applying the algorithm to blocks of size 1 on the o�-diagonal of 


:
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Table 1. Toxicities and severity weights in the sarcoma trial

Type of Toxicity Grade Severity Weight

Myelosuppression w/o fever 3 1.0

4 1.5

Myelosuppression with fever 3 5.0

4 6.0

Dermatitis 3 2.5

4 6.0

Liver 2 2.0

3 3.0

4 6.0

Nausea/Vomiting 3 1.5

4 2.0

Fatigue 3 0.5

4 1.0
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Table 2. Case-by-case illustration of the method in the sarcoma trial

Patient Dose Myelosupp. Dermatitis Liver Fatigue Nausea TTB

1 400 Gr. 3 w/o Fev. Gr. 3 None None Gr. 3 5.0

2 400 Gr. 3 w/o Fev. None None None None 1.0

3 400 Gr. 3 w/o Fev. None None None None 1.0

4 400 None None None None None 0

5 500 None Gr. 3 None None None 2.5

6 500 None None None None None 0

7 500 Gr. 3 w/o Fev. Gr. 3 None None None 3.5

8 500 Gr. 4 w/o Fev. None Gr. 2 None None 3.5

9 600 Gr. 3 w/o Fever None None None Gr. 3 2.5

10 600 Gr. 4 w/o Fever None None None None 1.5

11 600 None Gr. 3 None Gr. 3 None 3.0

12 600 None Gr. 3 None Gr. 3 None 3.0

13 700 Gr. 3 w. Fev. None Gr. 2 None Gr. 3 8.5

14 700 Gr. 3 w/o Fev. Gr. 3 None Gr. 3 None 4.0

15 700 None Gr. 3 None None Gr. 3 4.0

16 700 None None None Gr. 3 None 0.5

17 600 Gr. 3 w/o Fev. None None None Gr. 3 2.5

18 600 Gr. 3 w/o Fev. None None None None 1.0

19 600 None Gr. 3 Gr. 2 Gr. 3 None 5.0

20 600 None Gr. 3 None Gr. 3 None 3.0



Table 2. (Continued)

Patient Dose Myelosupp. Dermatitis Liver Fatigue Nausea TTB

21 600 None None None None None 0

22 600 None Gr. 3 None None None 2.5

23 600 Gr. 4 w/o Fev. None None None None 1.5

24 600 Gr. 4 w/o Fev. None None None None 1.5

25 700 Gr. 3 w/o Fev. None Gr. 2 None None 3.0

26 700 Gr. 3 w/o Fev. None None None None 1.0

27 700 Gr. 3 w/o Fev. None None None Gr.4 3.0

28 700 Gr. 3 w/o Fev. None None None None 1.0

29 700 Gr. 3 with Fev. None None None None 5.0

30 700 Gr. 3 w/o Fev. Gr. 3 None None Gr. 3 5.0

31 700 None None None Gr. 3 None 0.5

32 700 None None None Gr. 3 None 0.5

33 700 Gr. 4 w/o Fever None Gr. 2 None Gr. 3 5.0

34 700 Gr. 3 w/o Fever Gr. 3 None None None 3.5

35 700 None None None None None 0

36 700 None None Gr. 3 None None 3.0



Table 3. Posterior mean total toxicity burdens, by dose, for the illustrative trial summarized

in Table 2.

Dose Level

100 200 300 400 500 600 700 800 900 1000

Prior 1.05 1.55 2.06 2.61 3.18 3.76 4.35 4.91 5.46 5.96

After Cohort 1 0.56 0.93 1.35 1.81 2.29 2.78 3.24 3.68 4.08 4.45

After Cohort 2 0.53 0.90 1.34 1.83 2.34 2.85 3.34 3.79 4.20 4.57

After Cohort 3 0.53 0.90 1.32 1.78 2.27 2.75 3.22 3.66 4.06 4.42

After Cohort 4 0.54 0.92 1.35 1.85 2.38 2.92 3.45 3.95 4.41 4.83

After Cohort 5 0.57 0.95 1.39 1.89 2.43 2.97 3.50 3.99 4.44 4.84

After Cohort 6 0.55 0.90 1.29 1.74 2.22 2.72 3.21 3.68 4.11 4.51

After Cohort 7 0.59 0.91 1.26 1.65 2.08 2.53 3.00 3.45 3.88 4.27

After Cohort 8 0.57 0.89 1.24 1.63 2.06 2.51 2.98 3.43 3.87 4.27

After Cohort 9 0.57 0.88 1.22 1.60 2.03 2.49 2.97 3.45 3.91 4.34
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Table 4. Simulation results for the sarcoma trial under nine scenarios. LS = low severity toxicities,

HS = high severity toxicities, Psel = % selected, Npats = number of patients treated.

Main Gemcitabine Dose, mg/m2

Toxicities 100 200 300 400 500 600 700 800 900 1000

 � = 3.04 at 200 mg/m2

LS Psel 1.6 93.7 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Npats 2.2 21.8 5.3 5.6 1.1 0.0 0.0 0.0 0.0 0.0

HS Psel 4.1 92.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Npats 4.5 22.0 4.5 4.6 0.4 0.0 0.0 0.0 0.0 0.0

 � = 3.04 at 500 mg/m2

LS Psel 0.0 0.0 0.0 5.6 85.4 9.0 0.0 0.0 0.0 0.0

Npats 0.0 0.0 0.0 5.6 18.5 9.7 2.1 0.1 0.0 0.0

HS Psel 0.0 0.1 0.0 5.2 86.9 7.8 0.0 0.0 0.0 0.0

Npats 0.0 0.0 0.1 6.6 20.6 7.8 1.0 0.0 0.0 0.0

 � = 3.04 at 800 mg/m2

LS Psel 0.0 0.0 0.0 0.0 0.0 0.3 10.4 80.7 8.3 0.2

Npats 0.0 0.0 0.0 4.0 4.0 4.0 5.6 11.4 5.9 1.0

HS Psel 0.0 0.0 0.0 0.0 0.0 0.1 13.3 80.3 6.2 0.0

Npats 0.0 0.0 0.0 4.0 4.0 4.0 5.7 11.7 5.8 0.7
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Figure 1: Total toxicity burden as a function of dose under each of the six dose-toxicity

scenarios considered in the simulation study.
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Figure 2: Posterior distribution of the total toxicity burden for each dose, after observing the

data from the �rst 12, 24, and 36 patients in the illustrative trial summarized in Table 1.
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