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ABSTRACT

Consider designing a r-stage clinical trial. There are two available treatments and

N exchangeable patients to be treated as effectively as possible. The stages may

be viewed as separate trials. Responses are dichotomous. The problem is to decide

how large each stage should be and how many patients should be assigned to each

treatment during each stage. Information is updated during after each stage using

Bayes’ theorem. In planning stage j, responses from selections in stages 1 to j − 1

are available but responses in stage j are not. We consider r = 2 for two situations,

when one arm is known and when both arms are unknown. The dominant term for

the length of the first stage in an optimal design for general N is found explicitly. In

both situations the order of magnitude of the length of the first stage is N1/2.

1. INTRODUCTION

In a standard design of a two-armed clinical trial, patients are randomized in a bal-

anced fashion to the two treatment arms. The trial’s sample size, n, is chosen to

achieve a particular power to distinguish between the null hypothesis of treatment

equality of the arms and a hypothesized “clinically significance difference” δ between

the arms. A Bayesian decision-theoretic approach is quite different. It considers the
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consequences of each possible sample size and identifies one to maximize expected

utility, or minimize expected loss. Such an approach requires a definition of utility.

One that is appealing is the overall health of individuals affected with the disease or

condition in question and who will be treated with one of the two arms. Beginning

with Anscombe (1963) and Colton (1963), numerous authors have addressed clinical

trial design problem by maximizing expected health over this “patient horizon.” This

approach has been criticized because the size N of this patient horizon is unknown. In

particular, it depends on the effectiveness and side effects of both treatments, which

are unknown. To our knowledge the notion of a patient horizon has never been used

in designing actual trials, at least not in a formal way.

In this article we assume a number N of patients over which the expected number

of treatment successes is to be maximized. The N patients are treated in r stages,

with updating between stages. Parameter N has one of two possible interpretations.

The less problematic interpretation is that N is the size of a clinical trial. The other is

that N is the patient horizon discussed above, where a clinical trial is to be conducted

on a subset of these patients, and again the clinical trial can be conducted in stages.

In the latter interpretation, r is reduced by 1 because the last “stage” is the set of

patients treated with one of the treatments in question in clinical practice and based

on the results of the (r − 1)-stage trial. We address the optimal size of these stages

when r = 2. In the special case r = 2 and taking the latter interpretation, this means

finding the optimal length of a single-stage clinical trial.

We take N to be fixed, which in the “patient horizon” setting is subject to the

criticism cited in the first paragraph. Our principal message is that the order of

magnitude of N should be considered in choosing sample sizes of clinical trials, and

therefore precision in choosing N is not important. Considering the extremes, diseases

or conditions that are very common (large N) call for larger trials than do rare diseases

(small N). These two extremes are addressed in the same way when choosing sample

sizes via power calculations. (However, any particular sample size corresponds to

some combination of power and δ. Applied statisticians may choose lower power and

larger δ for diseases that are rare, a strategy that is consistent with our conclusions in

this article.) In the Bayesian approach, unknown quantities are regarded as random.

Allowing N to have a probability distribution would give results similar to the results



OPTIMAL DESIGNS FOR CLINICAL TRIALS 3

of this article upon replacing N with its mean (Witmer 1986, Cheng 1994). In an

actual setting, experts could assess the annual size of the patient population and

the potential availability of other therapies over the next several years. Patients

presenting in the future could be discounted by the probability they will be treated

using one of the two treatments involved in the trial and the expected value of N

calculated.

Consider two treatments with dichotomous responses: success and failure. The

goal is to treat N patients as effectively as possible, which we take to mean max-

imizing the expected proportion of success. A substantial literature deals with se-

quential procedures in which assignments depend on all previous assignments and

responses. For example, Feldman (1962), Rodman (1978), Gittins (1979), Whittle

(1980), Bather (1981), Berry and Fristedt (1985), and Berry and Eick (1995) assume

that the outcomes for previously treated patients are known when the current patient

arrives. This assumption is not always realistic: responses may be delayed and even

if responses are immediate, continual updating may not be possible.

We regard the N patients as being treated in a fixed number of r groups, or stages.

The decision problem is to choose the size of each stage (number of patients), and

the number of patients assigned to each treatment in each stage. When making these

decisions, responses from selections in the previous stages are available and can be

considered but responses in the current stage are not available until the next group

of selections is made.

The two arms can be represented as Bernoulli processes with success probabilities

θ1 and θ2. We regard θ1 and θ2 to be random and having prior distribution π(θ1, θ2).

Observations from the same arm are exchangeable.

There is a literature concerning bandit problems in stages. Berry & Pearson (1985)

considered several scenarios, including one in which both arms are unknown with a

special kind of prior distribution under which θ1 and θ2 are dependent and all the

mass is assigned to two points: (α, β) and (β, α). They find that when α = 1− β, a

balanced first stage (n1 = n2) is nearly optimal.

The outline of this paper is as follows. Sections 2 deals with the case in which

P (θ2 = λ) = 1, that is, the second arm is known. Every optimal allocation avoids the

known arm until the last stage, unless P (θ1 ≤ λ) = 1. In the case of P (θ1 ≤ λ) = 1,
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arm 1 should not be used at all. In Section 2, we consider r = 2 and find that the

dominant term of the optimal length of the first stage is

[ 0.5λ(1− λ)π(λ)

E(θ1 ∨ λ)− E(θ1)

]1/2
N1/2,

when π(λ) > 0, a result that generalizes Example 6 of Berry & Pearson (1985) where

π is uniform on (0, 1).

In Section 3, we extend the results of Section 2 to the case in which both arms are

unknown and r = 2. As in Section 2, the optimal length of the first stage is found to

have order N1/2, and the proportionate allocations to the two arms are found. The

dominant terms of the optimal allocation to arm 1 and arm 2 are

n∗1 ∼
[ 0.5cN

E(θ1 ∨ θ2|π)− E(θ1|π)

]1/2
, n∗2 ∼

[ 0.5cN

E(θ1 ∨ θ2|π)− E(θ2|π)

]1/2
,

where c is defined in (3.9).

2. ONE ARM KNOW, TWO STAGES

When P (θ2 = λ) = 1, observing arm 1 gives immediate gain and information. Ob-

serving arm 2 gives only immediate gain. So observations on arm 2 have no utility

in stage 1. Therefore arm 2 will be used only in the last stage, if used at all. To

make the notation simpler, we replace θ1 by θ. The expected worth of assigning n

observations to arm 1 in the first stage is

W2(N, n, π, λ) =
1

N

{
nE(θ) + (N − n)E

[
E(θ|Sn) ∨ λ

]}
, (2.1)

where E(θ|Sn) is the posterior mean of θ given Sn successes under prior π. Let

n(N, π, λ, 2) be the optimal length of the first stage in a two-stage problem. The

maximum worth is

V2(N, π, λ) = max
0≤n≤N

W2(N, n, π, λ) = W2(N, n(N, π, λ, 2), π, λ).

{E(θ|Sn) ∨ λ, n = 1, 2, ...} is a uniformly integrable submartingale sequence, and

it converges to θ ∨ λ almost everywhere. According to the Martingale Convergence

Theorem,

lim
n→∞

E(E(θ|Sn) ∨ λ) = E(θ ∨ λ|π). (2.2)
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Expression (2.2) means that the expected proportion of success from the second stage

is maximized if full information concerning the success probability θ is obtained in

the first stage. It is easy to see that if 0 < P (θ ≤ λ) < 1, then n(N, π, λ, 2) must

satisfy the following:

lim
N→∞

n(N, π, λ, 2) = ∞, lim
N→∞

n(N, π, λ, 2)

N
= 0.

The main purpose of the following development, Lemma 2.1 through Lemma 2.8,

is to prove that

W2(N, n, π, λ)

=
n

N
E(θ) +

N − n

N

[
E(θ ∨ λ)− c(v + 1)π0(λ)

n(v+2)/2
+ O

( 1

n(v+3)/2

)] (2.3)

where prior density function π(θ) = |λ − θ|vπ0(θ), π0(θ) is assumed to satisfy a

Lipschitz condition in a neighborhood of λ and π0(λ) > 0. The constant c(v + 1) is

defined by (2.15). Expression (2.3) will allow us to find the rate and the magnitude

of the dominant term of the optimal first stage size.

The critical aspect of the following development is understanding the behavior of

E(E(θ|Sn) ∨ λ), the maximum worth per observation in the second stage, especially

in comparison with E(θ ∨ λ), the corresponding worth for perfect information. The

next result is the initial step in this direction.

For any given n, define an integer k(n) as the following:

k(n) = 0, if E(θ|Sn = 0) > λ;

k(n) = n, if E(θ|Sn = n) < λ;

otherwise, k(n) satisfies the inequalities:

E[θ|Sn = k(n)] ≤ λ < E[θ|Sn = k(n) + 1].

(2.4)

For any given n, {E(θ|Sn = k), k = 0, 1, ..., n.} is a nondecreasing sequence in k.

Therefore, such a k(n) exists for every n.

Lemma 2.1. Where k(n) is defined by (2.4),

E(θ ∨ λ)− E[E(θ|Sn) ∨ λ]

=
∫ λ

0
(λ− θ)Pθ[Sn > k(n)]π(θ)dθ +

∫ 1

λ
(θ − λ)Pθ[Sn ≤ k(n)]π(θ)dθ.

(2.5)
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Proof. The maximum worth per observation in the second stage is

E[E(θ|Sn) ∨ λ] = λP (Sn ≤ k(n)) + E[θ1{i: i>k(n)}(Sn)]

=
∫ 1

0
λPθ[Sn ≤ k(n)]π(θ)dθ +

∫ 1

0
θPθ[Sn > k(n)]π(θ)dθ.

(2.6)

(2.5) follows upon subtracting (2.6) from E(θ∨λ) =
∫ λ
0 λπ(θ)dθ +

∫ 1
λ θπ(θ)dθ.

Lemma 2.2. If the prior π satisfies a Lipschitz condition in a neighborhood of λ,

then k(n) = nλ + O(1), where k(n) is defined by (2.4).

Proof. The difference between the posterior mean and the MLE Sn/n is O(n−1)

(Schervish, 1995. Ch. 7.4.). The result follows from definition (2.4).

We will prove, using large deviation theory, that as n goes to infinity, the rate at

which the right-hand side of (2.5) converges to zero is O(n−1) if π(λ) > 0.

We define d(a, θ) to be Kullback-Leibler distance:

d(a, θ) = ln
(a

θ

)a
+ ln

(1− a

1− θ

)1−a
. (2.7)

Lemma 2.3. If the prior π satisfies a Lipschitz condition in a neighborhood of

λ: {θ : |θ − λ| ≤ δ}, 0 < 2δ < min{λ, 1− λ}, and constant u ≥ 0, then∫ λ−δ

0
|λ− θ|uPθ[Sn > k(n)]π(θ)dθ

converges to zero exponentially and uniformly in prior π.

Proof. According to Lemma 2.2, k(n)/n = λ + O(1/n). When n is sufficiently

large, Pθ[Sn ≥ k(n)] ≤ Pθ[Sn/n ≥ λ − δ/2]. Let a be a constant, 0 < a < 1. As a

special case in R. R. Bahadur (1960), for any θ, 0 < θ < a,

Pθ

(Sn

n
≥ a

)
=

e−nd(a,θ)

√
2πn

a(1− θ)√
a(1− a)(a− θ)

((1− a)θ

a(1− θ)

)n(1−a)−[n(1−a)](
1 + O(n−1/2)

)
,

where [x] represents the integer part of x, and a = λ − δ/2 in this case. Since

0 < θ < λ− δ,
a(1− θ)√

a(1− a)(a− θ)

((1− a)θ

a(1− θ)

)n(1−a)−[n(1−a)]

is bounded. Furthermore, e−nd(a,θ) ≤ e−nd(λ−δ/2,λ−δ), which converges to zero expo-

nentially. Since ∫ λ−δ

0
|λ− θ|uπ(θ)dθ ≤ 1
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for any probability density function π on (0, 1), the result follows.

Lemma 2.4. For any δ defined in Lemma 2.3, any given positive constant b > 0

and u ≥ 0, ∫ λ+δ

λ−δ
|λ− θ|uPθ

[
λ− b

n
≤ Sn

n
≤ λ +

b

n

]
π(θ)dθ = O

( 1

n(u+2)/2

)
.

Proof. According to Stirling’s formula,

n!

k!(n− k)!
=

√
n

√
2π
√

k(n− k)

nn

kk(n− k)n−k

[
1 + O

( 1

n

)]
.

Furthermore, if |k − nλ| ≤ b,

n!

k!(n− k)!
θk(1− θ)n−k =

exp { − nd(k/n, θ)}
√

2πn
√

λ(1− λ)

[
1 + O

( 1

n

)]
, (2.8)

where d(k/n, θ) is defined by (2.7). Let πδ = max{π(θ) : |θ − λ| ≤ δ}. We have∫ λ+δ

λ−δ
|λ− θ|uPθ

[
λ− b

n
≤ Sn

n
≤ λ +

b

n

]
π(θ)dθ

=
∑

|k−nλ|≤b

∫ λ+δ

λ−δ
|λ− θ|u n!

k!(n− k)!
θk(1− θ)n−kπ(θ)dθ (2.9)

≤ πδ√
2πn

√
λ(1− λ)

[
1 + O

( 1

n

)] ∑
|k−nλ|≤b

∫ λ+δ

λ−δ
|λ− θ|u exp

{
− nd(k/n, θ)

}
dθ.

By Taylor expansion,

d(a, θ) =
(a− θ)2

2σ2(θ)
+
[
− 2a

ξ3
+

2(1− a)

(1− ξ)3

](a− θ)3

6
(2.10)

where σ2(θ) = θ(1− θ), and ξ is between a the θ.

For |θ − λ| ≤ δ and |k/n− λ| ≤ b/n, there exists M > 0, such that

d(k/n, θ) ≥ M(k/n− θ)2.

We obtain∫ λ+δ

λ−δ
|λ− θ|u exp

{
− nd(k/n, θ)

}
dθ

≤
∫ λ+δ

λ−δ
|k/n− θ + O(n−1)|u exp

{
− nM(k/n− θ)2

}
dθ (2.11)

≤ (Mn)−(u+1)/2
∫ +∞

−∞
|t + O(n−1)|ue−t2dt = O

(
n−(u+1)/2

)
.
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In the last inequality, t = (Mn)1/2(k/n − θ). Combining (2.9) and (2.11), the result

follows.

The proof of the following Lemma 2.5 is analogous to that of Lemma 2.3 and is

omitted.

Lemma 2.5. If the prior π satisfies a Lipschitz condition in a neighborhood of λ:

{θ : |θ − λ| ≤ δ}, 0 < 2δ < min{λ, 1− λ}, and constant u ≥ 0,∫ λ

λ−δ
|λ− θ|uPθ

[Sn

n
> λ + δ

]
π(θ)dθ

converges to zero exponentially and uniformly in prior π.

In view of Lemmas 2.3, 2.4, and 2.5, we have∫ λ

0
|λ− θ|uPθ[Sn > k(n)]π(θ)dθ

=
∫ λ

λ−δ
|λ− θ|uPθ

[
λ ≤ Sn

n
≤ λ + δ

]
π(θ)dθ + O

(
n−(u+1)/2

)
.

(2.12)

The following Lemmas 2.6 and 2.7 provide a double integral approximation to the

right-hand side of (2.12).

Lemma 2.6. For u ≥ 0, w ≥ 0, σ2(λ) = λ(1− λ),∫ λ

λ−δ
dθ
∫ λ+δ

λ
|λ− θ|u|x− λ|we−nd(x,θ)dx

=
(σ(λ)√

n

)u+w+2
∫ ∞

0

∫ ∞

0
sutwe−(s+t)2/2dsdt

[
1 + O

(
n−1/2

)]
.

Proof. By Taylor expansion,

d(x, θ) =
1

2σ2(λ)

[
(x− λ)− (θ − λ)

]2
+ O

[
(x− λ)− (θ − λ)

]3
.

Let t =
√

n(x− λ)/σ(λ) and s =
√

n(λ− θ)/σ(λ). We have∫ λ

λ−δ
dθ
∫ λ+δ

λ
|λ− θ|u|x− λ|we−nd(x,θ)dx

=
∫ λ

λ−δ
dθ
∫ λ+δ

λ
|λ− θ|u|x− λ|we−n[(x−λ)−(θ−λ)]2/2σ2(λ)

[
1 + nO(x− θ)3

]
dx

=
(σ(λ)√

n

)u+w+2[
1 + O

( 1√
n

)] ∫ ∞

0

∫ ∞

0
sutwe−(s+t)2/2dsdt.
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Lemma 2.7. If the prior π satisfies a Lipschitz condition in a neighborhood of λ:

{θ : |θ − λ| ≤ δ}, 0 < 2δ < min{λ, 1− λ}, and constant u ≥ 0,∫ λ

λ−δ
|λ− θ|uPθ

[
λ ≤ Sn

n
≤ λ + δ

]
π(θ)dθ

=
∫ λ

λ−δ
dθ
∫ λ+δ

λ
|λ− θ|u

√
n√

2πσ(x)
e−nd(x,θ)π(θ)dx + O

( 1

n(u+2)/2

)
.

(2.13)

Proof. Let

fn(x, θ) =
exp{−nd(x, θ)}

σ(x)
.

Let dxe be the smallest integer greater than or equal to x, and bxc be the largest

integer smaller than or equal to x. In view of Lemma 2.6, it is easy to see∫ λ

λ−δ
dθ
∫ λ+δ

λ
|λ− θ|u

√
n√

2πσ(x)
e−nd(x,θ)π(θ)dx

=
∫ λ

λ−δ
dθ
∫ bn(λ+δ)c/n

dnλe/n
|λ− θ|u

√
n√

2πσ(x)
e−nd(x,θ)π(θ)dx

[
1 + O

( 1√
n

)]
.

Similar to (2.8), we have

Pθ

[
λ ≤ Sn

n
≤ λ + δ

]
=

∑
nλ≤k≤n(λ+δ)

√
n√
2π

1

n
fn

(k

n
, θ
)[

1 + O
( 1

n

)]
.

Furthermore,∫ bn(λ+δ)c/n

dnλe/n
fn(x, θ)dx−

∑
nλ≤k≤n(λ+δ)

fn

(k

n
, θ
) 1

n

=
∑

nλ≤k≤n(λ+δ)

∫ (k+1)/n

k/n

∂fn(ξk, θ)

∂x

(
x− k

n

)
dx =

∑
nλ≤k≤n(λ+δ)

∂fn(ξk, θ)

∂x

1

n2
,

where ξk is in [k/n, (k + 1)/n]. Since

∂fn(x, θ)

∂x
=

{
−1− 2x

2σ3(x)
− n

σ(x)

[
ln

x

1− x
− ln

θ

1− θ

]}
exp{−nd(x, θ)},

and by Taylor expansion,

ln
x

1− x
− ln

θ

1− θ
=

(x− θ)

σ2(ζ)
,

with ζ between x and θ, we obtain∣∣∣∣∣
∫ λ

λ−δ
|λ− θ|uPθ

[
λ ≤ Sn

n
≤ λ + δ

]
π(θ)dθ
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−
∫ λ

λ−δ
dθ
∫ bn(λ+δ)c/n

dnλe/n
|λ− θ|u

√
n√

2πσ(x)
e−nd(x,θ)π(θ)dx

∣∣∣∣∣
= O

 √
n√
2π

∫ λ

λ−δ

∑
nλ≤k≤n(λ+δ)

|λ− θ|u|ξk − θ|
σ(ξk)σ2(ζk)

exp{−nd(ξk, θ)}
1

n
dθ


= O

(
√

n
∫ λ

λ−δ
dθ
∫ bn(λ+δ)c/n

dnλe/n
|λ− θ|u|x− θ| exp{−nd(x, θ)}dx

)

= O

(
√

n
∫ λ

λ−δ
dθ
∫ λ+δ

λ
|λ− θ|u|x− θ| exp{−nd(x, θ)}dx

)
= O

(
1

n(u+2)/2

)
.

The last equality is a direct result of Lemma 2.6.

Lemma 2.8 describes the asymptotic behavior of E[E(θ|Sn) ∨ λ] in comparison

with E(θ ∨ λ).

Lemma 2.8. If prior π(θ) = |θ − λ|vπ0(θ), v ≥ 0, and π0(θ) satisfies a Lipschitz

condition in a neighborhood of λ, then

E(θ ∨ λ)− E[E(θ|Sn) ∨ λ] =
c(v + 1)π0(θ)

n(v+2)/2
+ O(n−(v+3)/2), (2.14)

where

c(u) =
2(u+2)/2Γ(u+2

2
)[σ(λ)]u+1

(u + 1)
√

2π
. (2.15)

Proof. According to (2.12) and Lemma 2.7,∫ λ

0
|λ− θ|Pθ[Sn > k(n)]π(θ)dθ

=
∫ λ

λ−δ
dθ
∫ λ+δ

λ
|λ− θ|v+1

√
n√

2πσ(x)
e−nd(x,θ)π0(θ)dx + O

( 1

n(v+3)/2

)
.

(2.16)

Applying a Taylor expansion and a Lipschitz condition, respectively,

1

σ(x)
=

1

σ(λ)
+ O(|x− λ|), π0(θ) = π0(λ) + O(|θ − λ|).

Apply Lemma 2.6 to the right-hand side of equation (2.16) to give∫ λ

0
|λ− θ|v+1Pθ[Sn > k(n)]π0(θ)dθ

=
(σ(λ)√

n

)v+3
√

nπ0(λ)√
2πσ(λ)

∫ ∞

0

∫ ∞

0
sv+1e−(s+t)2/2dsdt + O

( 1

n(v+3)/2

)

=
(σ(λ)√

n

)v+2 1√
2π

2(v+1)/2Γ(v+3
2

)π0(λ)

(v + 2)
+ O

( 1

n(v+3)/2

)

=
c(v + 1)π0(λ)

2n(v+2)/2
+ O

( 1

n(v+3)/2

)
.

(2.17)
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By analogy with the proof of (2.17), it can be shown that∫ 1

λ
|θ − λ|v+1Pθ[Sn ≤ k(n)]π0(θ)dθ =

c(v + 1)π0(λ)

2n(v+2)/2
+ O

( 1

n(v+3)/2

)
. (2.18)

In view of Lemma 2.1, (2.17) and (2.18),

E[E(θ|Sn) ∨ λ] = E(θ ∨ λ)− c(v + 1)π0(λ)

n(v+2)/2
+ O(n−(v+3)/2). (2.19)

We are ready to prove the main theorem of this section, which gives the dominant

term of the optimal length of the first stage.

Theorem 2.1. If π(θ) = |λ − θ|vπ0(θ), v ≥ 0, π0(θ) satisfies a Lipschitz

condition in a neighborhood of λ and π0(λ) > 0, then

lim
N→∞

n(N, π, λ, 2)

N
2

v+4

=
[2(v+1)/2Γ(v+3

2
)π0(λ)[σ(λ)]v+2

√
2π(E(θ ∨ λ)− E(θ))

] 2
v+4 . (2.20)

Proof. According to (2.1) and (2.19),

W2(N, n, π, λ)

=
n

N
E(θ) +

N − n

N

[
E(θ ∨ λ)− c(v + 1)π0(λ)

n(v+2)/2
+ O

( 1

n(v+3)/2

)]
= E(θ ∨ λ)− n

N

[
E(θ ∨ λ)− E(θ)

]
− c(v + 1)π0(λ)

n(v+2)/2
+ o

( 1

n(v+2)/2

)
.

We assume n/N = o(1) to get the last equality. The assumption has no effect on the

dominant term of n(N, π, λ, 2) because

lim
N→∞

n(N, π, λ, 2)

N
= 0.

The terms o(n−(v+2)/2) have no effect on the dominant term of n(N, π, λ, 2) either. The

dominant term of n(N, π, λ, 2) defined by (2.20) maximizes the first three dominant

terms of W2(N, n, π, λ), which can be proved by differentiation. The theorem follows.

Corollary 2.1. If π(θ) is positive at λ and it satisfies a Lipschitz condition

in a neighborhood of λ, then

n(N, π, λ, 2) ∼
{

σ2(λ)π(λ)

2[E(θ ∨ λ)− E(θ)]

}1/2 √
N ; (2.21)

V2(N, π, λ) = E(θ ∨ λ)−
{σ2(λ)π(λ)

2
[E(θ ∨ λ)− E(θ)]

}1/2 2√
N

+ O
( 1

N3/4

)
. (2.22)
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Proof. Equation (2.21) is a special case of (2.20) with v = 0, π0(λ) = π(λ),

Γ(3/2) =
√

π/2 and c(1) = σ2(λ)/2. (2.22) follows when we substitute (2.20) into

the right-hand side of (2.3).

Table 2.1 shows the magnitude of the dominant terms of the optimal sizes, for the

combinations of five different prior distributions and two different values of λ. The

magnitude in (2.21) is m2(π, λ) = {0.5σ2(λ)π(λ)/[E(θ ∨ λ)− E(θ)]}1/2.

Table 2.1

Prior π λ Magnitude m2(π, λ)

Beta(1, 1) 0.5 1.00000

0.8 0.50000

Beta(3, 1) 0.5 2.44949

0.8 1.22474

Beta(1, 5) 0.5 0.34100

0.8 0.03179

Beta(1.5, 0.5) 0.5 1.52639

0.8 0.90499

Beta(0.5, 0.5) 0.5 0.70712

0.8 0.43350

3. BOTH ARMS UNKNOWN, TWO STAGES

A more general setting is where the success rates of both arms, denoted by θ1 and

θ2, are unknown. Colton (1963) and Canner (1970) have studied this case assuming

that the numbers of patients assigned to the two arms are equal. Cornfield, Halperin

and Greenhouse (1969) considered unbalanced designs, however they supposed that

the sample sizes for both arms were linear in N . Cheng (1996) found an upper bound

of rate N1/2 for the optimal sample size for each arm in the first stage. We will find

the dominant terms of the optimal allocations of both arms in the first stage in this

section.

Denote ~θ = (θ1, θ2). Let π(~θ) = π(θ1, θ2) be the joint prior probability density.

The expected worth of assigning n1 observations to arm 1 and n2 observations to arm
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2 in the first stage is

W2(N, (n1, n2), π)

=
1

N

{
n1E(θ1) + n2E(θ2) + (N − n1 − n2)E

[
E(θ1|Sn1 , Tn2) ∨ E(θ2|Sn1 , Tn2)

] }
where E(θi|Sn1 , Tn2) is the posterior mean of θi given Sn1 successes on arm 1 and Tn2

successes on arm 2, i = 1, 2.

The main purpose of Lemmas 3.1 through 3.5 is to prove that

E
[
E(θ1|Sn1 , Tn2) ∨ E(θ2|Sn1 , Tn2)

]
= E(θ1 ∨ θ2|π)− c

( 1

n1

+
1

n2

)
+ o

( 1

n1

+
1

n2

)
where c is defined in (3.9).

Lemma 3.1. Let An1,n2 = {(k, j) : E(θ1 − θ2|Sn1 = k, Tn2 = j) ≤ 0}. Then

E(θ1 ∨ θ2)− E
{
E(θ1|Sn1 , Tn2) ∨ E(θ2|Sn1 , Tn2)

}
=
∫ ∫

θ1<θ2

(θ2 − θ1)P~θ(A
c
n1,n2

)π(~θ)d~θ +
∫ ∫

θ1≥θ2

(θ1 − θ2)P~θ(An1,n2)π(~θ)d~θ.

(3.1)

Proof. The term subtracted on the left-hand side of (3.1) is

E [E(θ1|Sn1 , Tn2) ∨ E(θ2|Sn1 , Tn2)]

=
∑

(k,j)∈Ac
n1,n2

[ ∫ 1

0

∫ 1

0
θ1P~θ(Sn1 = k, Tn2 = j)π(~θ)d~θ

]
+
∑∑
(k,j)∈An1,n2

[ ∫ 1

0

∫ 1

0
θ2P~θ(Sn1 = k, Tn2 = j)π(~θ)d~θ

]

=
∫ 1

0

∫ 1

0
θ1P~θ(A

c
n1,n2

)π(~θ)d~θ +
∫ 1

0

∫ 1

0
θ2P~θ(An1,n2)π(~θ)d~θ.

(3.2)

The result follows from subtracting (3.2) from

E(θ1 ∨ θ2) =
∫ ∫

θ1<θ2

θ2π(~θ)d~θ +
∫ ∫

θ1≥θ2

θ1π(~θ)d~θ. (3.3)

Lemma 3.2. If π satisfies a Lipschitz condition on the set {(θ1, θ2) : |θ1−θ2| ≤ δ}
for some δ > 0, then

E(θ1|Sn1 , Tn2) = Sn1/n1 + O(n−1
1 ); E(θ2|Sn1 , Tn2) = Tn2/n2 + O(n−1

2 ).
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Proof. Use Lemma 2.2.

Lemma 3.3. Under the condition of Lemma 3.2,∫ ∫
θ1<θ2−δ

(θ2 − θ1)π(~θ)P~θ(A
c
n1,n2

)d~θ (3.4)

and ∫ ∫
θ1>θ2+δ

(θ1 − θ2)π(~θ)P~θ(An1,n2)d
~θ (3.5)

converge to 0 exponentially as n−1
1 + n−1

2 goes to zero.

Proof. We prove (3.4) only. (3.5) can be proved by a similar argument. As a

direct result of Lemma 3.2,

P~θ(A
c
n1,n2

) = P~θ

(
Sn1

n1

− Tn2

n2

+ O(n−1
1 + n−1

2 ) ≥ 0
)

< P~θ

(
Sn1

n1

− Tn2

n2

≥ −δ/3
)

when n−1
1 + n−1

2 is sufficiently small. According to the Central Limit Theorem,

P~θ

(
Sn1

n1

− Tn2

n2

≥ −δ/3
)

< 1− Φ

 −δ/2− (θ1 − θ2)√
n−1

1 σ2(θ1) + n−1
2 σ2(θ2)


< 1− Φ

 δ/2√
n−1

1 σ2(θ1) + n−1
2 σ2(θ2)

 ,

(3.6)

where Φ is the standard normal cumulative distribution function and n−1
1 + n−1

2 is

sufficiently small. The last inequality in (3.6) holds because θ1 − θ2 < −δ.

The lemma is proved since the right-hand side of (3.6) converges to zero exponen-

tially and uniformly in ~θ, and∫ ∫
θ1<θ2−δ

(θ1 − θ2)π(~θ)d~θ ≤ 1.

Lemma 3.4. Assume that π satisfies a Lipschitz condition in the region {(θ1, θ2) :

|θ1 − θ2| < δ} for some δ > 0. Then

I1 =
∫ ∫

θ2−δ<θ1<θ2

(θ2 − θ1)π(~θ)P~θ(A
c
n1,n2

)d~θ =
c

4

( 1

n1

+
1

n2

)
+ o

( 1

n1

+
1

n2

)
, (3.7)

I2 =
∫ ∫

θ2+δ≥θ1≥θ2

(θ1−θ2)π(~θ)P~θ(An1,n2)d
~θd~θ =

c

4

( 1

n1

+
1

n2

)
+o
( 1

n1

+
1

n2

)
, (3.8)

where

c =
∫ 1

0
σ2(x)π(x, x)dx =

∫ 1

0
x(1− x)π(x, x)dx, (3.9)
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and An1,n2 is defined in Lemma 3.1.

Proof. We prove (3.7); (3.8) follows by symmetry. According to Lemma 3.2

and the Central Limit Theorem,

P~θ(A
c
n1,n2

) = P~θ

(
Sn1

n1

− Tn2

n2

+ O(n−1
1 + n−1

2 ) ≥ 0
)

=
[
1− Φ

( θ2 − θ1√
n−1

1 σ2(θ1) + n−1
2 σ2(θ2)

)]
[1 + o(1)].

Applying a Lipschitz condition, we have

π(θ1, θ2) = π(θ1, θ1) + O(|θ2 − θ1|).

Therefore,

I1 =
∫ ∫

θ2−δ<θ1<θ2

π(θ1, θ1)
[
(θ2 − θ1) + O(θ2 − θ1)

2
]

·
[
1− Φ

( θ2 − θ1√
n−1

1 σ2(θ1) + n−1
2 σ2(θ1 + ξ)

)]
[1 + o(1)]d~θ,

where ξ is between 0 and δ. Letting u = θ2 − θ1,

I1 =

(∫ 1−δ

0

∫ δ

0
+
∫ 1

1−δ

∫ 1−θ1

0

)
π(θ1, θ1)

[
u + o(u2)

]
·
[
1− Φ

( u√
n−1

1 σ2(θ1)+n−1
2 σ2(θ1+ ξ)

)]
[1 + o(1)]dudθ1.

Now let

t =
u√

n−1
1 σ2(θ1)+n−1

2 σ2(θ1+ ξ)
.

Then∫ 1

1−δ

∫ 1−θ1

0
π(θ1, θ1)

[
u + o(u2)

][
1− Φ

( u√
n−1

1 σ2(θ1)+n−1
2 σ2(θ1+ ξ)

)]
dudθ1

= O

(∫ 1

1−δ
π(θ1, θ1)

(σ2(θ1)

n1

+
σ2(θ1 + ξ)

n2

)[ ∫ ∞

0
t(1− Φ(t))dt

]
dθ1

)

= O
(
δ
( 1

n1

+
1

n2

))
.

Since ∫ ∞

0
t(1− Φ(t))dt = 1/4,
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we have

I1 =
∫ 1−δ

0

1

4
π(θ1, θ1)

(σ2(θ1)

n1

+
σ2(θ1 + ξ)

n2

)
dθ1 + O

(
δ
( 1

n1

+
1

n2

))
=

1

4

∫ 1

0
π(θ1, θ1)σ

2(θ1)
( 1

n1

+
1

n2

)
dθ1 + O

(
δ
( 1

n1

+
1

n2

))
.

Letting δ go to 0, we obtain

I1 =
c

4

( 1

n1

+
1

n2

)
+ o

( 1

n1

+
1

n2

)
.

The following theorem gives the dominant terms of the optimal allocation in the

first stage. Asymptotically, the arm with larger expectation with respect to the prior

should be allocated to more patients in the first stage.

Theorem 3.1. Assume that π satisfies a Lipschitz condition and is positive

in the region {(θ1, θ2) : |θ1 − θ2| < δ} for some δ > 0. If n∗1 and n∗2 are optimal

allocations, then

n∗1 ∼
[ 0.5cN

E(θ1 ∨ θ2|π)− E(θ1|π)

]1/2
, n∗2 ∼

[ 0.5cN

E(θ1 ∨ θ2|π)− E(θ2|π)

]1/2
, (3.10)

where c is defined in (3.9).

Proof. According to Lemmas 3.1, 3.3, and 3.4,

E
[
E(θ1|Sn1 , Tn2) ∨ E(θ2|Sn1 , Tn2)

]
= E(θ1 ∨ θ2)−

c

2

( 1

n1

+
1

n2

)
+ o

( 1

n1

+
1

n2

)
,

where c is defined in (3.9), and

W2(N, (n1, n2), π) = E(θ1 ∨ θ2)−
n1

N

[
E(θ1 ∨ θ2)− E(θ1)

]
−n2

N

[
E(θ1 ∨ θ2)− E(θ2)

]
− c

2

( 1

n1

+
1

n2

)
+ o

( 1

n1

+
1

n2

)
.

Thus, the dominant terms of the optimal solutions of n1 and n2 must minimize

n1

N

[
E(θ1 ∨ θ2)− E(θ1)

]
+

n2

N

[
E(θ1 ∨ θ2)− E(θ2)

]
+

c

2

( 1

n1

+
1

n2

)
.

(3.10) follows by differentiation.

If θ2 is degenerate at λ and θ1 has a prior π1, then c = σ2(λ)π1(λ). n∗1 is the

same as the answer given by Corollary 2.1. However, n∗2 is not equal to 0. Therefore,

Section 2 is not exactly a special case of Section 3, and should be addressed separately.
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The order in which patients are assigned in the first stage is irrelevant. Since

randomization minimizes the potential for bias in treatment assignment, first-stage

patients should be randomized to the two arms, with proportions implied by (3.10).

In the special case where θ1 and θ2 are exchangeable (that is, π is symmetric in its

arguments), Theorem 3.1 indicates that the proportions allocated to the two arms

should be equal (asymptotically). Therefore, in settings in which treatment arms are

regarded as exchangeable a priori, Theorem 3.1 is a decision-theoretic justification of

balanced randomized clinical trials. A discrepancy between the theorem and standard

practice in medical research is that the theorem implies that overall trial size—order

of magnitude
√

N—should depend on the prevalence of the disease or condition being

treated and not on considerations of statistical power.

Table 3.1 shows the magnitude of the dominant terms of the optimal sizes.

m(1, π) =
[ 0.5c

E(θ1 ∨ θ2|π)− E(θ1|π)

]1/2
, m(2, π) =

[ 0.5c

E(θ1 ∨ θ2|π)− E(θ2|π)

]1/2
.

Table 3.1

Prior π m(1, π)) m(2, π)

θ1 ∼ Beta(1, 1)

θ2 ∼ Beta(1, 1)
0.70711 0.70711

θ1 ∼ Beta(3, 1)

θ2 ∼ Beta(3, 1)
1.00000 1.00000

θ1 ∼ Beta(1, 2)

θ2 ∼ Beta(2, 1)
0.42640 2.0000

θ1 ∼ Beta(5, 1)

θ2 ∼ Beta(1, 1)
1.58114 0.40825

θ1 ∼ Beta(1.5, 0.5)

θ2 ∼ Beta(2, 2)
1.17670 0.48349

4. DISCUSSION

Section 2 addresses the case in which one treatment has known effectiveness.

Because patient populations and diseases themselves change over time, and because
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physicians change their attitudes about which patients should be treated, this case

has limited applicability in modern clinical trials. The main applications of Section

2 is to settings in which there is a well known standard therapy and a clinical trial

will consist of an experimental therapy that will be compared to historical controls

treated with the standard. The order of magnitude of the first stage is
√

N . The

experimental therapy should be used exclusively in this first of two stages.

The second stage of a three-stage trial is the first stage of a 2-stage trial. Therefore,

its length has order of magnitude
√

N . However, the length of the second stage will be

different from the length of the first of a two-stage trial, and for two reasons. Firstly,

N will have been decreased by the length of the first stage. Secondly, the length of

the second stage will depend on the current distribution of θ which will have been

updated from the initial distribution π based on the observations from the first stage.

In Section 3 neither arm has known effectiveness. As indicated in the Introduction,

the case r = 2 applies both to a clinical trial conducted in two stages and to choosing a

sample size for a single-stage clinical trial where N is the patient horizon. For a large

class of prior distributions π, the optimal length of the first stage (or the clinical trial,

in the second interpretation) is
√

N . Theorem 3.1 gives the proportional allocation to

the two arms. If π(θ1, θ2) is symmetric in its arguments then the numbers of patients

allocated to the two arms should be (approximately) equal. Whether balanced or not,

the order of patients allocated to the two arms is irrelevant. Therefore, allocation can

(and should) be made randomly during this first stage.

Whether one or both arms have unknown characteristics, the order of magnitude

of the length of the first stage of a 2-stage trial is
√

N . We conjecture that the length

of the first stage of an r−stage trial is r
√

n for arbitrary r. Moreover, we conjecture

that this result holds for an arbitrary (but finite) number of arms, known or not.

An important message in our article is that the size of a clinical trial should

depend on the prevalence of the disease or condition being treated. It should also

depend on the possibility of future treatments being developed (because this affects

the size of the patient horizon). A trial addressing overall effective treatment of a

common ailment such as coronary artery disease should be larger than a trial to

evaluate treatment of a rare form of cancer. In both cases the order of magnitude of

the trial length should be
√

N , but N is much smaller in the second case.
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