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Summary 

 

    The contributions of Edmond Lhoste are largely unknown outside of France, and even 

within that country are not well known. His main contributions were in two areas: (1) the 

development of distributions that represent little or no prior knowledge, and (2) a 

sophisticated posterior analysis for normal and binomial populations. His results are 

similar to those of Haldane (1948) and Jeffreys (1939), but they appeared much earlier in 

1923. They represent a significant and unique contribution to Bayesian ideas in the early 

part of the 20th century.  
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1. INTRODUCTION     

 

     Edmond Lhoste was born in 1880 and died in 1948.  He studied engineering at the 

Ecole Polytechnique, and in 1923, while serving as a captain in the French army, he 

wrote Le Calcul des probabilités appliqué  a   l’ artillerie,  lois de probabilité a priori.  

This was a collection of four articles comprising about 92 pages that appeared 

respectively in the May, June, July, and, August issues of the Revue d’ Artillerie.  For this 

review, Lhoste’s results from the June and July issues are emphasized, because they 

contain his original ideas. The May issue is an introduction and motivation for the study, 

and the August issue focuses on applications to artillery.       

     In the second article, his contributions to Bayesian statistics were substantial and 

include the development of vague prior distributions that represent little or no knowledge 

about the mean and variance of a normal distribution and about the probability of success 

for the binomial distribution.  His results were similar to those of Jeffreys (1961) for the 

normal distribution, and to those of Haldane (1948) for the binomial distribution.  

For example, he used a constant prior for the mean of a normal, while for the standard 

deviation he used a prior that was the inverse of the standard deviation, namely 

  

f(σ ) = 1/σ  for  σ > 0. 

 

The prior for the binomial parameter θ  was  

 

f(θ ) ∝   1/ θ[ (1-θ )],  
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which was  also recommended, but much later,  by Haldane (1948). 

     In addition to his work with prior information, he developed sophisticated Bayesian 

inferential procedures for the normal and binomial distributions and applied them to 

problems in artillery.  Many of his contributions were important and novel and have been 

commonly regarded to be discovered by other authors. 

 

2. THE DEVELOPMENT OF VAGUE PRIOR INFORMATION 

 

    In the June article, Lhoste begins with the declaration “ Je n’ai pas l’intention 

d’exposer dans ces quelques articles la théorie classique du caclcul des probabilités. Une 

telle étude serait superflue.” He has declared independence from the usual approach to 

Bayesian presentations and then announces he will use the method of Bayes  Rule (regle 

de Bayes) to develop Bayesian inferences for the mean and standard deviation of  the 

normal distribution. Assuming the mean of the normal is unknown and variance known, 

he states Bayes’ theorem, namely that the posterior density of the mean is equal to a 

constant times the prior density of the mean times the likelihood function for the mean, 

based on n i.i.d. observations. I have taken the liberty of using modern terminology.  For 

example, Lhoste would use the phrase, “la courbe de dispersion” (the curve of 

dispersion), for what we now call the density function, and he would employ “les causes” 

for prior information about a parameter. Using such terms as cause and effect for prior 

information and observable events, respectively, was the standard terminology in 

statistics in discussing inverse probability at that time.  Another quaint phrase employed 
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by Lhoste was “une grandeur éventuelle” to designate a parameter as a random variable.   

Poincaré (1912) and Keynes (1920) employed similar language in their influential 

textbooks. Beginning with Haldane (1932) and Jeffreys (1939) there is a shift toward the 

use of more modern phrases. 

     Lhoste’s June article consists of developing vague prior distributions for:  (1) the 

mean µ  of a normal, (2) the standard deviationσ  of a normal, and (3) the binomial 

parameterθ .   For each case, the prior distribution for the relevant parameter is 

developed, using techniques based on little or no prior knowledge about the parameter. 

     For the mean of a normal population, Lhoste proposed a constant prior density, based 

on something resembling the principle of precise measurement. See Barnett (1999, page 

279) for a discussion of this principle. The likelihood function and the prior density are 

considered density functions of the unknown mean µ ,  and the ratio of the variance of 

the likelihood function to the variance of the prior density is considered to be small  

(because the variance of the prior density is considered to be large relative to that of the 

likelihood function). This, in turn, implies that the graph of the prior density is flat 

relative to that of the likelihood function, or in the words of Lhoste,   “En d’autres termes, 

si l’on admet que le rapport est tres petit’, la forme de la fonction n’a pas d’influence sur 

le resultat final et on peut pratiquement reamplacer cette function par une constante.” 

(Translation: “In other words, if one admits that the ratio is small, the form of the prior 

function doesn’t have influence on the final result and we can practically replace the prior 

by a constant.”)    

     With regard to his choice of the prior for the standard deviationσ , Lhoste reasons that 

the prior density for σ  should be the same as that for its reciprocal, and he lets 
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f(σ ) = 1/σ  for  σ > 0,                                                                        (2.1) 

 

be the prior density for the standard deviation. Thus, our lack of knowledge about σ  

should be the same as our lack of knowledge about 1/σ . This is similar to Jeffreys’ 

(1961, page 119) invariance principle that states that prior information about σ  should be 

the same as that for any power ofσ .  

     To determine the prior density for the binomial parameter θ ,  Lhoste used the prior 

induced by the prior density for the odds  γ  = )1/( θθ − , and since the odds and σ  for 

the normal distribution  have the same domain, the positive numbers,  the  same prior 

density for the odds is assigned  as that for σ  of a normal distribution (2.3),  which leads 

to 

  

 f(θ ) ∝   1/[θ (1-θ )]                                                                          (2.2) 

 

as the prior density for θ .   

    As mentioned earlier, these determinations of prior information resemble those used by 

Jeffreys (1945, 1961) for the mean and variance of a normal population, and by Haldane 

(1948) for the binomial parameter. Later we will discuss and compare the manner in 

which vague prior information was justified and assigned to the parameters by Lhoste,  

Jeffreys, and Haldane.   
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3. BAYESIAN INFERENCES FOR NORMAL AND BINOMIAL POPULATIONS 

 

 

     In his July article,   Lhoste develops Bayesian inferences for the parameters of normal 

and binomial populations, using the vague priors he developed in the first article.  

Several cases are considered: (1) a normal population with known standard deviation σ  

(l’erreur moyenne quadratique), but unknown mean µ  (la valeur probable), 

 (2) the mean known,  but standard deviation unknown, (3) both mean and variance 

unknown, and (4) the unknown binomial parameter θ .  

 

3.1  Mean unknown but standard deviation  known. Using the constant prior density, the 

mean has posterior density 

f( )| dataµ   ∝    exp-[n (
_

x−µ ) 2  / (2 2σ )],                                    (3.1) 

 

thus, by inspection, the posterior distribution of the mean is normal with mean the sample 

mean and variance  2σ  / n.  

 

3.2 Mean is known but the standard deviation is unknown. With a  vague prior density 

for σ given above (2.1),  the posterior density of the standard deviation is   
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f(σ |data) ∝  )1( +− nσ  exp- A/ 2 2σ ,                                            (3.2) 

 

where A= ∑
=

=
−

ni

i
ix

1

2)( µ . 

    Thus,   the posterior distribution of  2σ  is an inverse gamma with alpha = n/2 and beta 

=   A/2.  See Gelman et.al. (1995) for the properties of the inverse gamma. This would 

give as the posterior mean  

 

E( 2σ |data) = A/(n-2).                                                                     

 

Actually, Lhoste works with the posterior distribution of a precision parameter h = 

1/ 2 σ  and derives its mean as 

 

E(h|data) = )2/3/(2)1( −− nSn , 

 

by using  the value of the normalizing constant given for the posterior distribution of 

σ  above.  

 

 3.3.   For the third case above when both parameters are unknown, the marginal posterior 

distributions of the mean  µ  and standard deviation σ  are derived employing as the joint 

prior density 
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f( σµ , |data) ∝   1/σ .                                                                       (3.4) 

 

     He writes that the joint density of the two parameters is a constant times the prior 

density of the mean, times the prior density of the standard deviation, times the likelihood 

function for both parameters based on n i.i.d. observations. He does this without stating 

that in effect one is assuming,  a priori,  that  the mean and standard deviation are 

independent, with a constant prior for the mean and the vague prior   (2.1) for the 

standard deviation.  Nevertheless, he derives as the marginal posterior distribution for the 

mean as a t-distribution with n-1 degrees of freedom,  the mean is the sample mean, and 

the precision parameter is n/S 2 , where S 2  is the sample variance.  See DeGroot (1970) 

for this parameterization of the t-distribution with density 

  

f( µ |data)  ∝    [1+n( µ -
_

x ) 2 /(n-1) S 2 ] 2/n− . 

 

The posterior moments of µ  are  

E( µ  |data ) =  
_

x  , and  

Var( µ | data) =  S 2 (n-1)/n(n-3). 

     These results derived by Lhoste are used today in many Bayesian texts for inferences 

about the mean and variance of a normal. See, for example, Zellner (1971), Box and Tiao 

(1973), and Broemeling (1985).  

      I believe Lhoste was the first to employ 1/σ  as the joint prior density for µ  andσ , 

however, before Lhoste, others had derived the posterior distribution of the mean of 
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normal population when both parameters are unknown.  See Pfanzagl and Sheynin (1996) 

for the history of the early Bayesian work on the t-distribution.  Luroth (1876),   

Edgeworth (1883), and Burnside (1923) all derived the posterior distribution of the mean 

as a t-distribution (with various degrees of freedom), all of which were related to that 

given by Lhoste; however, they used a constant joint prior density for their particular 

parameterization of the normal. 

     With regard to marginal posterior distribution of σ ,   Lhoste arrived at 

 

f(σ |data) ∝  n−σ  exp - (n-1)S 2 / 2 2σ ,                                        (3.5) 

 

thus,  the posterior distribution of  2σ  is inverse gamma with alpha =(n-1)/2  and  

beta = (n-1) S 2 /2 and this differs by one degree of freedom from the posterior 

distribution  (3.2) of the same parameter when the mean is known. The posterior mean of 

the variance is 

E( 2σ |data) = (n-1)S 2 /(n-3),  

where  (n-1)S 2  = ∑
=

=
−

ni

i
xix

1

2)
_

(  . 

 

     I believe that Lhoste was the first to develop the posterior distribution of the standard 

deviation of the normal distribution.   

 

3.4   When making inferences for the binomial parameter and using his prior density 

(2.2), Lhoste derives the posterior distribution as the Beta density 
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f(θ |data) ∝  )1( 11 θθ − −−− xnx ,                                                   (3.6)                  

 

with parameters x and n-x , where x is the number of successes in n independent 

Bernoulli trials with probability of success θ .  His use of this prior density results in the 

posterior mean 

 

E(θ |data) = x/n ,                                                                              (3.7)    

 

the sample proportion, which is the same as Haldane’s (1948) prior distribution. 

He also found the posterior variance of θ  as  

V(θ |data) = x(n-x)/n 2 (n+1).                                         

     I believe Lhoste was the first, or certainly among the first (see Villegas, 1990), to use 

this prior density, resulting in the usual maximum likelihood estimator of the proportion. 

Of course, both Bayes and Laplace employed the uniform prior density, which would 

give 

 

E(θ  |data) = (x +1)/( n+2)                                                               (3.8)  

 

for the posterior mean. On the other hand, with Jeffreys’ (1961) prior (alpha = beta = ½), 

the posterior mean would be 

E(θ  |data) = (x +1/2)/( n+1).                                                           (3.9) 
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4. HISTORICAL SIGNIFICANCE OF LHOSTE 

 

     Lhoste is essentially unknown outside of France and even inside that county is little-

known. He is mentioned by Villegas (1990), but I can find very little information about 

him in the English language journals. In France, Dumas (1945, 1947, 1982, 1985), an 

obvious protégé of Lhoste, was quite enthusiastic in his admiration, and many of his 

publications concerned the articles by Lhoste. He was well aware that those contributions 

were much earlier than those of Jeffreys and Haldane. It is interesting to note that both 

Dumas and Lhoste were professional engineers.        

    What is the historical significance of the work of Lhoste?  He was aware of  the 

Bayesian  literature and references such authors as Bayes (1763),  Laplace (1774), Boole 

(1854), Venn (1866), Bertrand (1889), de Morgan (1847) , Jevons (1874), Lotze (1874), 

Czuber(1921),  Poincaré (1912),  Keynes  (1920),  and Pearson (1920). He would have 

had to have been heavily influenced by Bertrand and Poincaré.  

     On the other hand, I do not think he knew about Luroth (1876), Edgeworth, (1883), or 

Burnside (1923), all of whom derived the posterior t-distribution of the mean of a normal 

distribution, with variance unknown.  These were t-distributions all based on uniform 

priors for some parameterization of the normal distribution. For example, Edgeworth 

(1883) used a uniform prior distribution for the mean and precision (the inverse of the 

variance). These authors employed their priors without comment and without a rational 

justification; however Lhoste goes to great length to justify his choice of vague prior 

information. With regard to the mean of the normal, and as we have seen,  he used a 
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constant, based on assuming the prior density has a variance that is large relative to the 

‘variance’ of the likelihood function. This implied to him that the prior can be chosen as a 

constant.   

     Lastly, for the binomial population, Lhoste developed the Haldane (1948) prior, so-

called by Jeffreys (1961), some twenty five years before Haldane.   It is interesting to 

note that Haldane chose his prior so that the mean of the posterior distribution of θ  was 

the sample proportion x/n, because the sample proportion has optimal sampling 

properties.  Lhoste’s approach was quite different and based on a consistency argument 

linking the prior of the odds and the prior he had developed for standard deviation of a 

normal population.  The same approach was also examined by Jeffreys (1961, page 123).  

     Lhoste was an innovator with his detailed and informative posterior analysis of the 

standard deviation of a normal population.  He devotes 6 pages of Appendix II of the July 

article to the properties of the posterior distribution of the standard deviation and to the 

precision  h = 1/2σ ,  and, using the Euler integral of the second kind 

(the integral of the gamma function),  derives the mean, variance, and coefficient of 

variation of the posterior distribution of  h. One would expect Luroth, Edgeworth, or 

Burnside to have derived the posterior distribution of the standard deviation, because they 

were analyzing a normal population with both parameters unknown. Apparently they did 

not, however, Edgeworth (1883) did calculate and estimate σ  by maximizing the joint 

posterior distribution of µ  andσ .  

     Jeffreys (1961, page 139, equation 7) gave a similar analysis, but unlike Lhoste, did 

not go further in using it to make inferences about the normal population. For example, 

Jeffreys did not derive the posterior mean and variance ofσ ,  as did Lhoste.     
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     To summarize his work,   Lhoste’s contributions fall into two main areas: (1) a 

justification for the choice of prior distributions that convey ‘little’ information about the 

parameters of the model, and (2)  a detailed and modern posterior analysis for the normal 

distribution, including a unique focus on the standard deviation of a normal population.   

     Our study of Lhoste gives us a better understanding of the history of Bayesian ideas in 

the early 20th century. Dale’s (1991) history of inverse probability can now be augmented 

by adding Lhoste’s name to the list of innovative Bayesian researchers. Also, we can now 

complete the gap between what was provided by Poincaré,  Pearson, and Keynes during 

the period of 1900 to 1920,  and what Jeffreys  gave us beginning in 1933. We now have 

a better understanding of the significance and originality of Lhoste’s impact on the field.      
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